Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 60-66, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38322534

RESUMO

Objective: To explore the relationship between the expression of plectin and the migration of hepatocellular carcinoma (HCC) cells and to elucidate the molecular mechanisms by which plectin expression affects the migration of HCC cells. Methods: First of all, Western blot was performed to determine the expression of plectin in normal hepatocytes and HCC cells. Secondly, a plectin-downregulated HCC cell strain was established and the control group (shNC group) and shPLEC group were set up. Each group was divided into a vehicle control group (shNC+DMSO group or shPLEC+DMSO group) and a F-actin cytoskeleton polymerization inducer Jasplakinolide group (shNC+Jasp group or shPLEC+Jasp group). Western blot was performed to determine the expression of plectin and epithelial-mesenchymal transition (EMT)-related proteins, including N-cadherin, vimentin, and E-cadherin. HCC cell migration was evaluated by Transwell assay. KEGG (Kyoto Encyclopedia of Genes and Genomes) was used to analyze the signaling pathways related to plectin gene. The polymerization of F-actin was analyzed by immunofluorescence assay. Results: Compared with the normal hepatocytes, HCC cells showed high expression of plectin. Compared with those in the shNC group, the expression of plectin in the shPLEC group was decreased (P<0.05), the migration ability of HCC cells was weakened (P<0.05), and the EMT process was inhibited (with the expression of N-cadherin and vimentin being decreased and the expression of E-cadherin being increased) (P<0.05). KEGG analysis showed that the regulation of cytoskeletal F-actin was most closely associated with plectin and cytoskeletal F-actin depolymerized in the shPLEC group. After treatment with Jasplakinolide, an inducer of F-actin cytoskeleton polymerization, the migration ability of HCC cells in the shPLEC+Jasp group was enhanced compared with that of shPLEC+DMSO group (P<0.05) and the EMT process was restored (with the expression of N-cadherin and vimentin being increased and the expression of E-cadherin being decreased) (P<0.05). In addition, the polymerization of cytoskeletal F-actin in HCC cells was also restored. Conclusion: Plectin is highly expressed in HCC cells. Plectin promotes the migration and the EMT of HCC cells through inducing F-actin polymerization.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Plectina , Humanos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Actinas/metabolismo , Caderinas/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Dimetil Sulfóxido , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Plectina/genética , Plectina/metabolismo , Polimerização , Vimentina/metabolismo
2.
Cells ; 13(2)2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38247853

RESUMO

In muscle cells subjected to mechanical stimulation, LINC complex and cytoskeletal proteins are basic to preserve cellular architecture and maintain nuclei orientation and positioning. In this context, the role of lamin A/C remains mostly elusive. This study demonstrates that in human myoblasts subjected to mechanical stretching, lamin A/C recruits desmin and plectin to the nuclear periphery, allowing a proper spatial orientation of the nuclei. Interestingly, in Emery-Dreifuss Muscular Dystrophy (EDMD2) myoblasts exposed to mechanical stretching, the recruitment of desmin and plectin to the nucleus and nuclear orientation were impaired, suggesting that a functional lamin A/C is crucial for the response to mechanical strain. While describing a new mechanism of action headed by lamin A/C, these findings show a structural alteration that could be involved in the onset of the muscle defects observed in muscular laminopathies.


Assuntos
Desmina , Lamina Tipo A , Distrofia Muscular de Emery-Dreifuss , Plectina , Humanos , Desmina/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Mioblastos , Plectina/metabolismo
3.
OMICS ; 27(6): 281-296, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37262182

RESUMO

Plectin, encoded by PLEC, is a cytoskeletal and scaffold protein with a number of unique isoforms that act on various cellular functions such as cell adhesion, signal transduction, cancer cell invasion, and migration. While plectin has been shown to display high expression and mislocalization in tumor cells, our knowledge of the biological significance of plectin and its isoforms in tumorigenesis remain limited. In this study, we first performed pathway enrichment analysis to identify cancer hallmark proteins associated with plectin. Then, a pan-cancer analysis was performed using RNA-seq data collected from the Cancer Genome Atlas (TCGA) to detect the mRNA expression levels of PLEC and its transcript isoforms, and the prognostic as well as diagnostic significance of the transcript isoforms was evaluated considering cancer stages. We show here that several tissue specific PLEC isoforms are dysregulated in different cancer types and stages but not the expression of PLEC. Among them, PLEC 1d and PLEC 1f are potential biomarker candidates and call for further translational and personalized medicine research. This study makes a contribution as a stride to unravel the molecular mechanisms underpinning plectin isoforms in cancer development and progression by revealing the potent plectin isoforms in different stages of cancer as potential early cancer detection biomarkers. Importantly, uncovering how plectin isoforms guide malignancy and particular cancer types by comprehensive functional studies might open new avenues toward novel cancer therapeutics.


Assuntos
Neoplasias , Plectina , Humanos , Plectina/genética , Plectina/metabolismo , Prognóstico , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neoplasias/diagnóstico , Neoplasias/genética
4.
Ocul Surf ; 29: 444-455, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37348651

RESUMO

PURPOSE: Anterior blepharitis is a frequent ocular condition which may result in severe ocular surface disease. In this study, advanced proteome analysis was performed to elucidate biological mechanisms underlying anterior blepharitis. METHODS: All patients underwent full ophthalmological examination including Ocular Surface Disease Index score (OSDI). Measurement of non-invasive break-up time (NBUT), Oxford score, and meibography were performed. Tear film samples from treatment naïve patients with anterior blepharitis (n = 15) and age-matched controls (n = 11) were collected with Schirmer filtration paper. The samples were analyzed with label-free quantification nano liquid chromatography - tandem mass spectrometry (LFQ nLC-MS/MS). Significantly regulated proteins were identified with a permutation-based calculation with a false discovery rate at 0.05. RESULTS: Among the 927 proteins detected, a total of 162 proteins were significantly changed. Regulated proteins were involved in cytoplasmic translation, positive regulation of B cell activation, complement activation and phagocytosis. High levels of plakin proteins, a group of proteins involved in cytoskeleton organization, were observed in anterior blepharitis, including plectin, desmoplakin, envoplakin, epiplakin, periplakin, and vimentin. The upregulation of plectin was confirmed with single reaction monitoring. Patients with anterior blepharitis had lower levels of immunoglobulin chains, VEGF coregulated chemokine 1 (CXCL17), and platelet-derived growth factor C. CONCLUSIONS: Anterior blepharitis was associated with a high level of plectin indicating a pronounced intracellular response with cytoskeletal reorganization. Our data suggest a lack of immunoglobulin chains and CXCL17 in anterior blepharitis with potential alterations in the ocular surface immune response.


Assuntos
Blefarite , Plectina , Humanos , Plectina/metabolismo , Espectrometria de Massas em Tandem
5.
Cells ; 12(9)2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37174658

RESUMO

Plectin, a highly versatile cytolinker protein, is crucial for myofiber integrity and function. Accordingly, mutations in the human gene (PLEC) cause several rare diseases, denoted as plectinopathies, with most of them associated with progressive muscle weakness. Of several plectin isoforms expressed in skeletal muscle and the heart, P1d is the only isoform expressed exclusively in these tissues. Using high-resolution stimulated emission depletion (STED) microscopy, here we show that plectin is located within the gaps between individual α-actinin-positive Z-disks, recruiting and bridging them to desmin intermediate filaments (Ifs). Loss of plectin in myofibril bundles led to a complete loss of desmin Ifs. Loss of Z-disk-associated plectin isoform P1d led to disorganization of muscle fibers and slower relaxation of myofibrils upon mechanical strain, in line with an observed inhomogeneity of muscle ultrastructure. In addition to binding to α-actinin and thereby providing structural support, P1d forms a scaffolding platform for the chaperone-assisted selective autophagy machinery (CASA) by directly interacting with HSC70 and synpo2. In isoform-specific knockout (P1d-KO) mouse muscle and mechanically stretched plectin-deficient myoblasts, we found high levels of undigested filamin C, a bona fide substrate of CASA. Similarly, subjecting P1d-KO mice to forced swim tests led to accumulation of filamin C aggregates in myofibers, highlighting a specific role of P1d in tension-induced proteolysis activated upon high loads of physical exercise and muscle contraction.


Assuntos
Actinina , Plectina , Animais , Humanos , Camundongos , Desmina/genética , Desmina/metabolismo , Filaminas , Plectina/metabolismo , Isoformas de Proteínas/metabolismo
6.
J Dermatol ; 50(2): 239-244, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35996939

RESUMO

Epidermolysis bullosa (EB) is a heterogeneous group of inherited disorders characterized by the blistering of the skin and mucous membranes. Although the molecular basis of EB has been significantly elucidated, the precise phenotypes of the lethal types of EB have not been completely characterized. Herein, we report a severe case of EB with pyloric atresia (PA). The patient was a Japanese boy who not only had skin lesions but also various complications such as PA, dysphagia, hypotonia, infectious keratitis with corneal ulcer, obstructive uropathy and protein-losing enteropathy. Genetic analysis led to the identification of two novel compound heterozygous mutations in the last exon of the plectin (PLEC) gene. Based on this finding, EB simplex with PA was diagnosed. Immunostaining with anti-plectin antibodies revealed truncated plectin proteins lacking the C-terminus in the patient's skin. We also conducted a prenatal diagnosis in subsequent pregnancy. Our report further highlights the crucial role of plectin in many organs and provides valuable information regarding the phenotypes resulting from mutations in the PLEC gene.


Assuntos
Epidermólise Bolhosa Simples , Epidermólise Bolhosa , Gravidez , Feminino , Humanos , Epidermólise Bolhosa Simples/complicações , Epidermólise Bolhosa Simples/diagnóstico , Epidermólise Bolhosa Simples/genética , Piloro/anormalidades , Piloro/metabolismo , Epidermólise Bolhosa/complicações , Epidermólise Bolhosa/diagnóstico , Epidermólise Bolhosa/genética , Mutação , Plectina/genética , Plectina/metabolismo
7.
Mol Biol Cell ; 33(13): ar121, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36001365

RESUMO

Keratin intermediate filaments convey mechanical stability and protection against stress to epithelial cells. Keratins are essential for colon health, as seen in keratin 8 knockout (K8-/-) mice exhibiting a colitis phenotype. We hypothesized that keratins support the nuclear envelope and lamina in colonocytes. K8-/- colonocytes in vivo exhibit significantly decreased levels of lamins A/C, B1, and B2 in a colon-specific and cell-intrinsic manner. CRISPR/Cas9- or siRNA-mediated K8 knockdown in Caco-2 cells similarly decreased lamin levels, which recovered after reexpression of K8 following siRNA treatment. Nuclear area was not decreased, and roundness was only marginally increased in cells without K8. Down-regulation of K8 in adult K8flox/flox;Villin-CreERt2 mice following tamoxifen administration significantly decreased lamin levels at day 4 when K8 levels had reduced to 40%. K8 loss also led to reduced levels of plectin, LINC complex, and lamin-associated proteins. While keratins were not seen in the nucleoplasm without or with leptomycin B treatment, keratins were found intimately located at the nuclear envelope and complexed with SUN2 and lamin A. Furthermore, K8 loss in Caco-2 cells compromised nuclear membrane integrity basally and after shear stress. In conclusion, colonocyte K8 helps maintain nuclear envelope and lamina composition and contributes to nuclear integrity.


Assuntos
Queratina-8 , Queratinas , Animais , Células CACO-2 , Colo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Humanos , Queratina-8/genética , Queratinas/metabolismo , Lamina Tipo A/metabolismo , Camundongos , Membrana Nuclear/metabolismo , Plectina/metabolismo , RNA Interferente Pequeno/metabolismo , Tamoxifeno
8.
Mol Biol Cell ; 33(12): ar104, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35857713

RESUMO

Cells migrating through physiologically relevant three-dimensional (3D) substrates such as cell-derived matrix (CDM) use actomyosin and vimentin intermediate filaments to pull the nucleus forward and pressurize the front of the cell as part of the nuclear piston mechanism of 3D migration. In this study, we tested the role of the cytoskeleton cross-linking protein plectin in facilitating the movement of the nucleus through 3D matrices. We find that the interaction of F-actin and vimentin filaments in cells on 2D glass and in 3D CDM requires actomyosin contractility. Plectin also facilitated these interactions and interacts with vimentin in response to NMII contractility and substrate stiffness, suggesting that the association of plectin and vimentin is mechanosensitive. We find that this mechanosensitive plectin complex slows down 2D migration but is critical for pulling the nucleus forward and generating compartmentalized intracellular pressure in 3D CDM, as well as low-pressure lamellipodial migration in 3D collagen. Finally, plectin expression helped to polarize NMII to in front of the nucleus and to localize the vimentin network around the nucleus. Together, our data suggest that plectin cross-links vimentin and actomyosin filaments, organizes the vimentin network, and polarizes NMII to facilitate the nuclear piston mechanism of 3D cell migration.


Assuntos
Actinas , Plectina , Actinas/metabolismo , Actomiosina/metabolismo , Movimento Celular/fisiologia , Filamentos Intermediários/metabolismo , Plectina/metabolismo , Vimentina/metabolismo
9.
Vet Med Sci ; 8(5): 2138-2146, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35667079

RESUMO

BACKGROUND: The ovary has an important role in reproductive function. Animal reproduction is dominated by numerous coding genes and noncoding elements. Although long noncoding RNAs (LncRNAs) are important in biological activity, little is known about their role in the ovary and fertility. METHODS: Three adult Shal ewes and three adult Sangsari ewes were used in this investigation. LncRNAs in ovarian tissue from two breeds were identified using bioinformatics analyses, and then target genes of LncRNAs were discovered. Target genes were annotated using the DAVID database, and their interactions were examined using the STRING database and Cytoscape software. The expression levels of seven LncRNAs with their target genes were assessed by real-time PCR to confirm the RNA-seq. RESULTS: Among all the identified LncRNAs, 124 LncRNAs were detected with different expression levels between the two breeds (FDR < 0.05). According to the DAVID database, target genes were discovered to be engaged in one biological process, one cellular component, and 21 KEGG pathways (FDR < 0.05). The PES1, RPS9, EF-1, Plectin, SURF6, CYC1, PRKACA MAPK1, ITGB2 and BRD2 genes were some of the most crucial target genes (hub genes) in the ovary. CONCLUSION: These results could pave the way for future efforts to address sheep prolificacy barriers.


Assuntos
RNA Longo não Codificante , Animais , Feminino , Ovário/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Plectina/genética , Plectina/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA-Seq/veterinária , Ovinos
10.
J Biomed Sci ; 29(1): 42, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35706019

RESUMO

BACKGROUND: The development of drug resistance in oral squamous cell carcinoma (OSCC) that frequently leads to recurrence and metastasis after initial treatment remains an unresolved challenge. Presence of cancer stem cells (CSCs) has been increasingly reported to be a critical contributing factor in drug resistance, tumor recurrence and metastasis. Thus, unveiling of mechanisms regulating CSCs and potential targets for developing their inhibitors will be instrumental for improving OSCC therapy. METHODS: siRNA, shRNA and miRNA that specifically target keratin 17 (KRT17) were used for modulation of gene expression and functional analyses. Sphere-formation and invasion/migration assays were utilized to assess cancer cell stemness and epithelial mesenchymal transition (EMT) properties, respectively. Duolink proximity ligation assay (PLA) was used to examine molecular proximity between KRT17 and plectin, which is a large protein that binds cytoskeleton components. Cell proliferation assay was employed to evaluate growth rates and viability of oral cancer cells treated with cisplatin, carboplatin or dasatinib. Xenograft mouse tumor model was used to evaluate the effect of KRT17- knockdown in OSCC cells on tumor growth and drug sensitization. RESULTS: Significantly elevated expression of KRT17 in highly invasive OSCC cell lines and advanced tumor specimens were observed and high KRT17 expression was correlated with poor overall survival. KRT17 gene silencing in OSCC cells attenuated their stemness properties including markedly reduced sphere forming ability and expression of stemness and EMT markers. We identified a novel signaling cascade orchestrated by KRT17 where its association with plectin resulted in activation of integrin ß4/α6, increased phosphorylation of FAK, Src and ERK, as well as stabilization and nuclear translocation of ß-catenin. The activation of this signaling cascade was correlated with enhanced OSCC cancer stemness and elevated expression of CD44 and epidermal growth factor receptor (EGFR). We identified and demonstrated KRT17 to be a direct target of miRNA-485-5p. Ectopic expression of miRNA-485-5p inhibited OSCC sphere formation and caused sensitization of cancer cells towards cisplatin and carboplatin, which could be significantly rescued by KRT17 overexpression. Dasatinib treatment that inhibited KRT17-mediated Src activation also resulted in OSCC drug sensitization. In OSCC xenograft mouse model, KRT17 knockdown significantly inhibited tumor growth, and combinatorial treatment with cisplatin elicited a greater tumor inhibitory effect. Consistently, markedly reduced levels of integrin ß4, active ß-catenin, CD44 and EGFR were observed in the tumors induced by KRT17 knockdown OSCC cells. CONCLUSIONS: A novel miRNA-485-5p/KRT17/integrin/FAK/Src/ERK/ß-catenin signaling pathway is unveiled to modulate OSCC cancer stemness and drug resistance to the common first-line chemotherapeutics. This provides a potential new therapeutic strategy to inhibit OSCC stem cells and counter chemoresistance.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Queratina-17/metabolismo , MicroRNAs , Neoplasias Bucais , Animais , Carboplatina/farmacologia , Carboplatina/uso terapêutico , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Integrina beta4/genética , Integrina beta4/metabolismo , Integrinas/genética , Integrinas/metabolismo , Integrinas/uso terapêutico , Queratina-17/genética , Queratina-17/farmacologia , Camundongos , MicroRNAs/farmacologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Plectina/genética , Plectina/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , beta Catenina/genética
11.
Cells ; 11(9)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563718

RESUMO

In light of recent progress in defining a unifying mechanism for the versatile functions and disease involvement of the cytolinker protein plectin, a series of invited review articles, together with an original research article, were published in Cells as a Special Issue entitled 'Plectin in Health and Disease' [...].


Assuntos
Plectina , Plectina/metabolismo
12.
J Cell Biol ; 221(3)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35139142

RESUMO

The coordinated interplay of cytoskeletal networks critically determines tissue biomechanics and structural integrity. Here, we show that plectin, a major intermediate filament-based cytolinker protein, orchestrates cortical cytoskeletal networks in epithelial sheets to support intercellular junctions. By combining CRISPR/Cas9-based gene editing and pharmacological inhibition, we demonstrate that in an F-actin-dependent context, plectin is essential for the formation of the circumferential keratin rim, organization of radial keratin spokes, and desmosomal patterning. In the absence of plectin-mediated cytoskeletal cross-linking, the aberrant keratin-desmosome (DSM)-network feeds back to the actin cytoskeleton, which results in elevated actomyosin contractility. Also, by complementing a predictive mechanical model with Förster resonance energy transfer-based tension sensors, we provide evidence that in the absence of cytoskeletal cross-linking, major intercellular junctions (adherens junctions and DSMs) are under intrinsically generated tensile stress. Defective cytoarchitecture and tensional disequilibrium result in reduced intercellular cohesion, associated with general destabilization of plectin-deficient sheets upon mechanical stress.


Assuntos
Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Plectina/metabolismo , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Citoesqueleto/ultraestrutura , Desmossomos/metabolismo , Desmossomos/ultraestrutura , Cães , Células Epiteliais/ultraestrutura , Técnicas de Inativação de Genes , Humanos , Queratinas/metabolismo , Células MCF-7 , Células Madin Darby de Rim Canino , Camundongos , Isoformas de Proteínas/metabolismo , Resistência à Tração
13.
J Cell Biol ; 221(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35175283

RESUMO

The integration of cytoskeletal/adhesive networks is critical to epithelial mechanobiology. In this issue, Prechova et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202105146) demonstrate that the cytolinker protein plectin is essential for the construction of a cortical cytoskeletal architecture required for epithelial tensional homeostasis.


Assuntos
Actinas , Plectina , Actinas/metabolismo , Citoesqueleto/metabolismo , Filamentos Intermediários/metabolismo , Plectina/genética , Plectina/metabolismo
14.
Cell Mol Life Sci ; 79(2): 95, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35080691

RESUMO

Autophagy is a lysosome-mediated degradative process that removes damaged proteins and organelles, during which autophagosome-lysosome fusion is a key step of the autophagic flux. Based on our observation that intermediate cytofilament keratin 8 (KRT8) enhances autophagic clearance in cells under oxidative stress condition, we investigated whether KRT8 supports the cytoplasmic architectural networks to facilitate the vesicular fusion entailing trafficking onto filamentous tracks. We found that KRT8 interacts with actin filaments via the cytolinker, plectin (PLEC) during trafficking of autophagosome. When PLEC was knocked down or KRT8 structure was collapsed by phosphorylation, autophagosome-lysosome fusion was attenuated. Inhibition of actin polymerization resulted in accumulation of autophagosomes owing to a decrease in autophagosome and lysosome fusion. Furthermore, myosin motor protein was found to be responsible for vesicular trafficking along the actin filaments to entail autolysosome formation. Thus, the autophagosome-lysosome fusion is aided by PLEC-stabilized actin filaments as well as intermediate cytofilament KRT8 that supports the structural integrity of actin filaments during macroautophagic process under oxidative stress condition.


Assuntos
Actinas/metabolismo , Autofagossomos/metabolismo , Queratina-8/metabolismo , Lisossomos/metabolismo , Plectina/metabolismo , Linhagem Celular , Humanos , Fusão de Membrana , Mapas de Interação de Proteínas
15.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613521

RESUMO

Plectin, as a cytoskeleton-related protein, is involved in various physiological and pathological processes of many cell types. Studies have found that plectin affects cancer cell invasion and metastasis, but the exact mechanism is not fully understood. In this study, we aim to investigate the role of plectin in the migration of hepatocellular carcinoma (HCC) cells and explore its relevant molecular mechanism. Herein, we found that the expression of plectin in HCC tissue and cells was significantly increased compared with normal liver tissue and cells. After downregulation of plectin, the migration ability of HCC cells was significantly lower than that of the control group. Moreover, the expression of E-cadherin was upregulated and the expression of N-cadherin and vimentin was downregulated, suggesting that plectin downregulation suppresses epithelial mesenchymal transformation (EMT) of HCC cells. Mechanically, we found that plectin downregulation repressed the extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Activation of ERK1/2 recovered the plectin downregulation-inhibited migration and EMT of HCC cells. Taken together, our results demonstrate that downregulation of plectin inhibits HCC cell migration and EMT through ERK1/2 signaling, which provides a novel prognostic biomarker and potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Transição Epitelial-Mesenquimal , Neoplasias Hepáticas , Plectina , Humanos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Invasividade Neoplásica/genética , Plectina/genética , Plectina/metabolismo
16.
ACS Appl Bio Mater ; 4(1): 984-994, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34913031

RESUMO

Nanoscale alterations in the cellular membrane transpire during cellular interactions with the extracellular environment through the endocytosis processes. Although the biological innuendos as well as alterations in cellular morphology during endocytosis are well-known, nanomechanical amendments in the cellular membrane are poorly understood. In this manuscript, atomic force microscope is employed to demonstrate the nanomechanical alterations in membrane dynamics during receptor mediated endocytosis of gold nanoparticles conjugated with either plectin-1 targeted peptide (PTP-GNP) or scrambled peptide (sPEP-GNP). Plectin-1 is aberrantly overexpressed at cell membrane of pancreatic cancer cells and is known to provide and maintain cellular mechanical integrity. During receptor mediated endocytosis of nanoparticles, we demonstrate temporal nanomechanical changes of cell membrane in both immortal pancreatic cancer Panc1 cells and patient derived primary pancreatic cancer cell, 4911. We further confirm the alterations of plectin-1 expression in Panc1 cell membrane during the receptor mediated endocytosis using classical streptavidin-biotin reaction and establish its association with nanomechanical alteration in membrane dynamics. Withdrawal of PTP-GNPs from the cell culture restores the plectin-1 expression at the membrane and reverses the mechanical properties of Panc1. We also show a distinctly opposite trend in nanomechanical behavior in cancer and endothelial cells when treated with sPEP-GNP and PTP-GNP, respectively, signifying receptor independent endocytosis process. This study illustrates the nanomechanical perspective of cell membrane in receptor mediated endocytosis of nanoparticles designed for organ specific drug delivery.


Assuntos
Membrana Celular/metabolismo , Endocitose/fisiologia , Ouro/química , Nanopartículas Metálicas/química , Plectina/metabolismo , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Plectina/química , Plectina/genética
17.
Cells ; 10(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34685719

RESUMO

Plectin is a multi-faceted, 500 kDa-large protein, which due to its expression in different isoforms and distinct organs acts diversely as a cytoskeletal crosslinker and signaling scaffold. It functions as a mediator of keratinocyte mechanical stability in the skin, primarily through linking intermediate filaments to hemidesmosomes. Skin fragility may occur through the presence of mutations in the gene encoding for plectin, PLEC, or through the presence of autoantibodies against the molecule. Below, we review the cutaneous manifestations of plectinopathies as well as their systemic involvement in specific disease subtypes. We summarize the known roles of plectin in keratinocytes and fibroblasts and provide an outlook on future perspectives for plectin-associated skin disorders.


Assuntos
Plectina/metabolismo , Dermatopatias/metabolismo , Pele/patologia , Animais , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Dermatopatias/terapia
18.
Cells ; 10(9)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34572001

RESUMO

Plectin, a high-molecular-mass cytolinker, is abundantly expressed in the central nervous system (CNS). Currently, a limited amount of data about plectin in the CNS prevents us from seeing the complete picture of how plectin affects the functioning of the CNS as a whole. Yet, by analogy to its role in other tissues, it is anticipated that, in the CNS, plectin also functions as the key cytoskeleton interlinking molecule. Thus, it is likely involved in signalling processes, thereby affecting numerous fundamental functions in the brain and spinal cord. Versatile direct and indirect interactions of plectin with cytoskeletal filaments and enzymes in the cells of the CNS in normal physiological and in pathologic conditions remain to be fully addressed. Several pathologies of the CNS related to plectin have been discovered in patients with plectinopathies. However, in view of plectin as an integrator of a cohesive mesh of cellular proteins, it is important that the role of plectin is also considered in other CNS pathologies. This review summarizes the current knowledge of plectin in the CNS, focusing on plectin isoforms that have been detected in the CNS, along with its expression profile and distribution alongside diverse cytoskeleton filaments in CNS cell types. Considering that the bidirectional communication between neurons and glial cells, especially astrocytes, is crucial for proper functioning of the CNS, we place particular emphasis on the known roles of plectin in neurons, and we propose possible roles of plectin in astrocytes.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Plectina/metabolismo , Animais , Humanos , Neuroglia/metabolismo , Neurônios/metabolismo
19.
Cells ; 10(9)2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34572100

RESUMO

Plectin, a high-molecular-weight cytoskeletal linker protein, binds with high affinity to intermediate filaments of all types and connects them to junctional complexes, organelles, and inner membrane systems. In addition, it interacts with actomyosin structures and microtubules. As a multifunctional protein, plectin has been implicated in several multisystemic diseases, the most common of which is epidermolysis bullosa simplex with muscular dystrophy (EBS-MD). A great part of our knowledge about plectin's functional diversity has been gained through the analysis of a unique collection of transgenic mice that includes a full (null) knockout (KO), several tissue-restricted and isoform-specific KOs, three double KOs, and two knock-in lines. The key molecular features and pathological phenotypes of these mice will be discussed in this review. In summary, the analysis of the different genetic models indicated that a functional plectin is required for the proper function of striated and simple epithelia, cardiac and skeletal muscle, the neuromuscular junction, and the vascular endothelium, recapitulating the symptoms of humans carrying plectin mutations. The plectin-null line showed severe skin and muscle phenotypes reflecting the importance of plectin for hemidesmosome and sarcomere integrity; whereas the ablation of individual isoforms caused a specific phenotype in myofibers, basal keratinocytes, or neurons. Tissue-restricted ablation of plectin rendered the targeted cells less resilient to mechanical stress. Studies based on animal models other than the mouse, such as zebrafish and C. elegans, will be discussed as well.


Assuntos
Modelos Animais de Doenças , Epidermólise Bolhosa Simples/patologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Mutação , Plectina/metabolismo , Animais , Epidermólise Bolhosa Simples/etiologia , Epidermólise Bolhosa Simples/metabolismo , Humanos , Distrofia Muscular do Cíngulo dos Membros/etiologia , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Plectina/genética , Isoformas de Proteínas
20.
Cells ; 10(9)2021 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-34572129

RESUMO

Plectin is a giant cytoskeletal crosslinker and intermediate filament stabilizing protein. Mutations in the human plectin gene (PLEC) cause several rare diseases that are grouped under the term plectinopathies. The most common disorder is autosomal recessive disease epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), which is characterized by skin blistering and progressive muscle weakness. Besides EBS-MD, PLEC mutations lead to EBS with nail dystrophy, EBS-MD with a myasthenic syndrome, EBS with pyloric atresia, limb-girdle muscular dystrophy type R17, or EBS-Ogna. In this review, we focus on the clinical and pathological manifestations caused by PLEC mutations on skeletal and cardiac muscle. Skeletal muscle biopsies from EBS-MD patients and plectin-deficient mice revealed severe dystrophic features with variation in fiber size, degenerative myofibrillar changes, mitochondrial alterations, and pathological desmin-positive protein aggregates. Ultrastructurally, PLEC mutations lead to a disorganization of myofibrils and sarcomeres, Z- and I-band alterations, autophagic vacuoles and cytoplasmic bodies, and misplaced and degenerating mitochondria. We also summarize a variety of genetically manipulated mouse and cell models, which are either plectin-deficient or that specifically lack a skeletal muscle-expressed plectin isoform. These models are powerful tools to study functional and molecular consequences of PLEC defects and their downstream effects on the skeletal muscle organization.


Assuntos
Epidermólise Bolhosa Simples/patologia , Músculo Esquelético/patologia , Distrofias Musculares/patologia , Plectina/metabolismo , Animais , Epidermólise Bolhosa Simples/metabolismo , Humanos , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...